МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Посольство Российской Федерации в Республике Корея

Общеобразовательная школа при Посольстве России в Республике Корея

PACCMOTPEHO

Педагогическим советом

Протокол № 1 от «30» августа 2023 г.

ВВЕРЖДЕНО В В ТЕЛОО В ТЕЛОО В ТЕЛОО В ТЕЛОО В ТЕЛОО В ТЕЛОО В В ТЕЛОО В ТЕЛОО

Распоряжение № 2 от «30» августа 2023 г.

РАБОЧАЯ ПРОГРАММА

(ID 3358732)

учебного предмета «Астрономия. Базовый уровень»

для обучающихся 10-11 классов

Пояснительная записка

- Федерального государственного стандарта среднего общего образования», утвержденного приказом Министерства образования и науки Российской Федерации от 17.05.2012 № 413 (с изменениями и дополнениями от 29.12.2014 № 1645, от 31.12.2015 №1578, от 29.06.2017 № 613, от 24.09.2020 № 519, от 11.12.2020 № 712);
- Авторской программы по учебному предмету В.М. Чаругина «Астрономия. Методическое пособие 10-11 классы. Базовый уровень: учеб пособие для учителей общеобразовательных организаций. М.: Просвещение, 2017. 32 с. (Сферы 1-11).
- "Астрономия" 10-11 классы: учеб. для общеобразоват. организаций: базовый уровень. / В.М. Чаругин. М.: Просвещение, 2018. 144 с.: ил. (Сферы 1-11).

Цели и задачи обучения Астрономии в 11 классе соответствуют целям и задачам обучения по предмету, определяемыми федеральным государственным образовательным стандартом основного общего образования и примерными программами, а также целям и задачам, указанным в авторской программе, и не противоречат целям и задачам реализации основной образовательной программе основного общего образования.

Согласно календарному учебному графику на 2023/2024 учебный год в 11 классе 34 учебных недель. В соответствии с учебным планом среднего общего образования на 2023/2024 учебный год на изучение учебного предмета «Астрономия» отводится 1 час в неделю. Поэтому рабочая программа по учебному предмету «Астрономия» на для 11 класса рассчитана на 34 учебных часа. Авторская программа рассчитана на 35 часов. Авторская программа реализуется в полном объеме за счет резервных часов.

Планируемые результаты освоения учебного предмета

Личностные результаты:

- умение управлять своей познавательной деятельностью;
- готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
- умение сотрудничать со сверстниками, детьми младшего возраста, взрослыми в образовательной, учебно-исследовательской, проектной и других видах деятельности;
- сформированность мировоззрения, соответствующего современному уровню развития науки; осознание значимости науки, владения достоверной информацией о передовых достижениях и открытиях мировой и отечественной науки; заинтересованность в научных знаниях об устройстве мира и общества; готовность к научно-техническому творчеству;
 - чувство гордости за российскую физическую науку, гуманизм;
- положительное отношение к труду, целеустремленность;
- экологическая культура, бережное отношение к родной земле, природным богатствам России и мира, понимание ответственности за состояние природных ресурсов и разумное природоиспользование.

Метапредметные результаты:

Регулятивные УУД:

Обучающийся сможет:

- самостоятельно определять цели, ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;
- оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для достижения поставленной ранее цели;
- сопоставлять имеющиеся возможности и необходимые для достижения целиресурсы;
- определять несколько путей достижения поставленной цели;
- -задавать параметры и критерии, по которым можно определить, что цельдостигнута;
- сопоставлять полученный результат деятельности с поставленной заранее целью;
- оценивать последствия достижения поставленной цели в деятельности, собственной жизни и жизни окружающих людей.

Познавательные УУД:

Обучающийся сможет:

- критически оценивать и интерпретировать информацию с разных позиций;
- распознавать и фиксировать противоречия в информационных источниках;
- использовать различные модельно-схематические средства для представления выявленных в информационных источниках противоречий;
- осуществлять развернутый информационный поиск и ставить не его основе новые (учебные и познавательные) задачи;
 - искать и находить обобщенные способы решения задачи;
- приводить критические аргументы, как в отношении собственного суждения, таки в отношении действий и суждений другого человека;
- анализировать и преобразовывать проблемно-противоречивые ситуации;
- выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможности широкого переноса средств и способов действия;
- выстраивать индивидуальную образовательную траекторию, учитывая ограничения со стороны других участников и ресурсные отношения;
- менять и удерживать разные позиции в познавательной деятельности (бытьучеником и учителем; формулировать образовательный запрос и выполнять консультативные функции самостоятельно; ставить проблему и работать над ее решением; управлять совместной познавательной деятельностью и подчиняться).

Коммуникативные УУД:

Обучающийся сможет:

- осуществлять деловую коммуникацию, как со сверстниками, так и со взрослыми (как внутри образовательной организации, так и за ее пределами); при осуществлении групповой работы быть как руководителем, так и членом проектной команды в разных ролях (генератором идей, критиком, исполнителем, презентующим и т.д.);
- развернуто, логично и точно излагать свою точку зрения с использование адекватных (устных и письменных) языковых средств;
- распознавать конфликтные ситуации и предотвращать конфликты до их активной фазы;
- согласовывать позиции членов команды в процессе работы над общим продуктом/решением;
- представлять публично результаты индивидуальной и групповой деятельности, как перед знакомой, так и перед незнакомой аудиторией;
- подбирать партнеров для деловой коммуникации, исходя из соображений результативности взаимодействия, а не личных симпатий;
- воспринимать критические замечания как ресурс собственного развития;
- точно и емко формулировать как критические, так и одобрительные замечания в адрес других людей в рамках деловой и образовательной коммуникации, избегая при этом личностных оценочных суждений.

Предметные результаты:

Выпускник на базовом уровне научится понимать:

смысл понятий: геоцентрическая и гелиоцентрическая система, видимая звездная величина, созвездие, противостояния и соединения планет, комета, астероид, метеор, метеорит, метеороит, планета, спутник, звезда, Солнечная система, Галактика, Вселенная, всемирное и поясное время, внесолнечная планета (экзопланета), спектральная классификация звезд, параллакс, реликтовое

излучение, Большой Взрыв, черная дыра;

смысл физических величин: парсек, световой год, астрономическая единица, звездная величина; смысл физического закона Хаббла;

основные этапы освоения космического пространства; гипотезы

происхождения Солнечной системы;

основные характеристики и строение Солнца, солнечной атмосферы; размеры Галактики, положение и период обращения Солнца относительно центра Галактики; уметь:

приводить примеры: роли астрономии в развитии цивилизации, использования методов исследований в астрономии, различных диапазонов электромагнитных излучений для получения информации об объектах Вселенной, получения астрономической информации с помощью космических аппаратов и спектрального анализа, влияния солнечной активности на Землю:

описывать и объяснять: различия календарей, условия наступления солнечных илунных затмений, фазы Луны, суточные движения светил, причины возникновения приливов и отливов; принцип действия оптического телескопа, взаимосвязь физико-химических характеристик звезд с использованием диаграммы «цвет-светимость», физические причины, определяющие равновесие звезд, источник энергии звезд и происхождение химических элементов, красное смещение с помощью эффекта Доплера; характеризовать особенности методов познания астрономии, основные элементы и свойства планет Солнечной системы, методы определения расстояний и линейных размеров небесных тел, возможные пути эволюции звезд различной массы;

находить на небе основные созвездия Северного полушария, в том числе: БольшаяМедведица, Малая Медведица, Волопас, Лебедь, Кассиопея, Орион; самые яркие звезды, в том числе: Полярная звезда, Арктур, Вега, Капелла, Сириус, Бетельгейзе;

использовать компьютерные приложения для определения положения Солнца, Луны и звезд на любую дату и время суток для данного населенного пункта;

использовать приобретенные знания и умения в практической деятельности иповседневной жизни для:

понимания взаимосвязи астрономии с другими науками, в основе которых лежат знания по астрономии, отделение ее от лженаук;

оценивания информации, содержащейся в сообщениях СМИ, Интернете, научно- популярных статьях».

Планируемые результаты освоения курса астрономии в 11 классе

Получить представления о структуре и масштабах Вселенной и месте человека в ней. Узнать о средствах, которые используют астрономы, чтобы заглянуть в самые удалённые уголки Вселенной и не только увидеть небесные тела в недоступных с Земли диапазонах длин волн электромагнитного излучения, но и узнать о новых каналах получения информации о небесных телах с помощью нейтринных и гравитационно- волновых телескопов.

Узнать о наблюдаемом сложном движении планет, Луны и Солнца, их интерпретации. Какую роль играли наблюдения затмений Луны и Солнца в жизни общества и история их научного объяснения. Как на основе астрономических явлений люди научились измерять время и вести календарь.

Узнать, как благодаря развитию астрономии люди перешли от представления геоцентрической системы мира к революционным представлениям гелиоцентрической системы мира. Как на основе последней были открыты законы, управляющие движениемпланет, и позднее, закон всемирного тяготения.

На примере использования закона всемирного тяготения получить представления о космических скоростях, на основе которых рассчитываются траектории полётов космических аппаратов к планетам. Узнать, как проявляет себя всемирное тяготение на явлениях в системе Земля—Луна, и эволюцию этой системы в будущем.

Узнать о современном представлении, о строении Солнечной системы, о строенииЗемли как планеты и природе парникового эффекта, о свойствах планет земной группы и планет-гигантов и об исследованиях астероидов, комет, метеоритов и нового класса небесных тел карликовых планет.

Получить представление о методах астрофизических исследований и законах физики, которые используются для изучения физически свойств небесных тел.

Узнать природу Солнца и его активности, как солнечная активность влияет на климат и биосферу Земли, как на основе законов физики можно рассчитать внутреннее строение Солнца и как наблюдения за потоками нейтрино от Солнца помогли заглянуть в центр Солнца и узнать о термоядерном источнике энергии.

Узнать, как определяют основные характеристики звёзд и их взаимосвязь между собой, о внутреннем строении звёзд и источниках их энергии; о необычности свойств звёзд белых карликов, нейтронных звёзд и чёрных дыр. Узнать, как рождаются, живут и умирают звёзды.

Узнать, как по наблюдениям пульсирующих звёзд цефеид определять расстояния до других галактик, как астрономы по наблюдениям двойных и кратных звёзд определяют их массы.

Получить представления о взрывах новых и сверхновых звёзд и узнать, как в звёздах образуются тяжёлые химические элементы.

Узнать, как устроена наша Галактика — Млечный Путь, как распределены в ней рассеянные и шаровые звёздные скопления и облака межзвёздного газа и пыли. Как с помощью наблюдений в инфракрасных лучах удалось проникнуть через толщумежзвёздного газа и пыли в центр Галактики, увидеть движение звёзд в нём вокруг сверхмассивной чёрной дыры.

Получить представление о различных типах галактик, узнать о проявлениях активности галактик и квазаров, распределении галактик в пространстве и формировании скоплений и ячеистой структуры их распределения.

Узнать о строении и эволюции уникального объекта Вселенной в целом. Проследить за развитием представлений о конечности и бесконечности Вселенной, о фундаментальных парадоксах, связанных с ними.

Понять, как из наблюдаемого красного смещения в спектрах далёких галактик пришли к выводу о нестационарности, расширении Вселенной, и, что в прошлом она была не только плотной, но и горячей и, что наблюдаемое реликтовое излучение подтверждает этот важный вывод современной космологии.

Узнать, как открыли ускоренное расширение Вселенной и его связью с тёмной энергией и всемирной силой отталкивания, противостоящей всемирной силе тяготения.

Узнать об открытии экзопланет — планет около других звёзд и современном состоянии проблемы поиска внеземных цивилизаций и связи с ними.

Научиться проводить простейшие астрономические наблюдения, ориентироватьсясреди ярких звёзд и созвездий, измерять высоты звёзд и Солнца, определять астрономическими методами время, широту и долготу места наблюдений, измерять диаметр Солнца и измерять солнечную активность и её зависимость от времени.

Содержание учебного предмета 11 класс

(34 часа, 1 час в неделю)

Строение и масштабы Вселенной, и современные наблюдения

Какие тела заполняют Вселенную. Каковы их характерные размеры и расстояния между ними. Какие физические условия встречаются в них. Вселенная расширяется.

Где и как работают самые крупные оптические телескопы. Как астрономы исследуют гамма-излучение Вселенной. Что увидели гравитационно-волновые и нейтринные телескопы.

Астрометрия

Звёздное небо и видимое движение небесных светил

Какие звёзды входят в созвездия Ориона и Лебедя. Солнце движется по эклиптике. Планеты совершают петлеобразное движение.

Небесные координаты

Что такое небесный экватор и небесный меридиан. Как строят экваториальнуюсистему небесных координат. Как строят горизонтальную систему небесных координат.

Видимое движение планет и Солнца

Петлеобразное движение планет, попятное и прямое движение планет. Эклиптика, зодиакальные созвездия. Неравномерное движение Солнца по эклиптике.

Движение Луны и затмения

Фазы Луны и синодический месяц, условия наступления солнечного и лунного затмений. Почему происходят солнечные затмения. Сарос и предсказания затмений.

Время и календарь.

Звёздное и солнечное время, звёздный и тропический год.

Устройство лунного и солнечного календаря, проблемы их согласования Юлианский и григорианский календари.

Небесная механика

Гелиоцентрическая система мира

Представления о строении Солнечной системы в античные времена и в средневековье. Гелиоцентрическая система мира, доказательство вращения Земли вокругСолнца. Параллакс звёзд и определение расстояния до них, парсек.

Законы Кеплера

Открытие И.Кеплером законов движения планет. Открытие закона Всемирного тяготения и обобщённые законы Кеплера. Определение масс небесных тел.

Космические скорости

Расчёты первой и второй космической скорости и их физический смысл. Полёт Ю.А. Гагарина вокруг Земли по круговой орбите.

Межпланетные перелёты.

Понятие оптимальной траектории полёта к планете. Время полёта к планете и даты

стартов.

Луна и её влияние на Землю

Лунный рельеф и его природа. Приливное взаимодействие между Луной и Землёй. Удаление Луны от Земли и замедление вращения Земли. Прецессия земной оси и предварение равноденствий.

Строение солнечной системы

Современные представления о Солнечной системе.

Состав Солнечной системы. Планеты земной группы и планеты - гиганты, их принципиальные различия. Облако комет Орта и Пояс Койпера. Размеры тел солнечной системы.

Планета Земля

Форма и размеры Земли. Внутреннее строение Земли. Роль парникового эффекта в формировании климата Земли.

Планеты земной группы

Исследования Меркурия, Венеры и Марса, их схожесть с Землёй. Как парниковый эффект греет поверхность Земли и перегревает атмосферу Венеры. Есть ли жизнь на Марсе. Эволюция орбит спутников Марса Фобоса и Деймоса.

Планеты-гиганты

Физические свойства Юпитера, Сатурна, Урана и Нептуна. Вулканическаядеятельность на спутнике Юпитера Ио. Природа колец вокруг планет-гигантов.

Планеты-карлики и их

свойства. Малые тела

Солнечной системы

Природа и движение астероидов. Специфика движения групп астероидов Троянцеви Греков. Природа и движение комет. Пояс Койпера и Облако комет Орта. Природа метеоров и метеоритов.

Метеоры и метеориты

Природа падающих звёзд, метеорные потоки и их радианты. Связь между метеорными потоками и кометами. Природа каменных и железных метеоритов. Природа метеоритных кратеров.

Понятие оптимальной траектории полёта к планете. Время полёта к планете и даты стартов.

Луна и её влияние на Землю

Лунный рельеф и его природа. Приливное взаимодействие между Луной и Землёй. Удаление Луны от Земли и замедление вращения Земли. Прецессия земной оси и предварение равноденствий.

Практическая астрофизика и физика Солнца

Методы астрофизических исследований

Устройство и характеристики телескопов рефракторов и рефлекторов. Устройство радиотелескопов, радиоинтерферометры.

Солнце

Основные характеристики Солнца. Определение массы, температуры и химического состава Солнца. Строение солнечной атмосферы. Солнечная активность и её влияние на Землю и биосферу.

Внутреннее строение Солнца.

Теоретический расчёт температуры в центре Солнца. Ядерный источник энергии и термоядерные реакции синтеза гелия из водорода, перенос энергии из центра Солнца наружу, конвективная зона. Нейтринный телескоп и наблюдения потока нейтрино от Солнца.

Звёзды.

Основные характеристики звёзд

Определение основных характеристик звёзд: массы, светимости, температуры и химического состава. Спектральная классификация звёзд и её физические основы. Диаграмма «спектральный класс» — светимость звёзд, связь между массой и светимостью звёзд.

Внутреннее строение звёзд

Строение звезды главной последовательности.

Строение звёзд красных гигантов и сверхгигантов.

Белые карлики, нейтронные звёзды, пульсары и чёрные дыры

Строение звёзд белых карликов и предел на их массу — предел Чандрасекара. Пульсары и нейтронные звёзды. Природа чёрных дыр и их параметры.

Двойные, кратные и переменные звёзды

Наблюдения двойных и кратных звёзд. Затменно-переменные звёзды. Определениемасс двойных звёзд. Пульсирующие переменные звёзды, кривые изменения блеска цефеид. Зависимость между светимостью и периодом пульсаций у цефеид. Цефеиды — маяки во Вселенной, по которым определяют расстояния до далёких скоплений и галактик.

Новые и сверхновые звёзды

Характеристики вспышек новых звёзд. Связь новых звёзд с тесными двойными системами, содержащими звезду белый карлик. Перетекание вещества и ядерный взрыв на поверхности белого карлика. Как взрываются сверхновые звёзды. Характеристики вспышек сверхновых звёзд. Гравитационный коллапс белого карлика с массой Чандрасекара в составе тесной двойной звезды — вспышка сверхновой первого типа. Взрыв массивной звезды в конце своей эволюции — взрыв сверхновой второго типа. Наблюдение остатков взрывов сверхновых звёзд.

Эволюция звёзд: рождение, жизнь и смерть звёзд

Расчёт продолжительности жизни звёзд разной массы на главной последовательности. Переход в красные гиганты и сверхгиганты после исчерпания водорода. Спокойная эволюция маломассивных звёзд, и гравитационный коллапс и взрывс образованием нейтронной звезды

или чёрной дыры массивной звезды. Определение возраста звёздных скоплений и отдельных звёзд и проверка теории эволюции звёзд.

Млечный Путь

Газ и пыль в Галактике.

Как образуются отражательные туманности. Почему светятся диффузные туманности Как концентрируются газовые и пылевые туманности в Галактике.

Рассеянные и шаровые звёздные скопления.

Наблюдаемые свойства рассеянных звёздных скоплений. Наблюдаемые свойства шаровых звёздных скоплений. Распределение и характер движения скоплений в Галактике. Распределение звёзд, скоплений, газа и пыли в Галактике.

Сверхмассивная чёрная дыра в центре Галактики и космические лучи. Инфракрасные наблюдения движения звёзд в центре Галактики и обнаружение в центре Галактики сверхмассивной черной дыры. Расчёт параметров сверхмассивной чёрной дыры. Наблюдения космических лучей и их связь со взрывами сверхновых звёзд.

Галактики.

Как классифицировали галактики по форме и камертонная диаграмма Хаббла. Свойства спиральных, эллиптических и неправильных галактик. Красное смещение в спектрах галактик и определение расстояния до них.

Закон Хаббла.

Вращение галактик и тёмная материя в них.

Активные галактики и квазары

Природа активности галактик, радиогалактики и взаимодействующие галактики. Необычные свойства квазаров, их связь с ядрами галактик и активностью чёрных дыр в них.

Скопления галактик

Наблюдаемые свойства скоплений галактик, рентгеновское излучение,температура и масса межгалактического газа, необходимость существования тёмнойматерии в скоплениях галактик. Оценка массы тёмной материи в скоплениях. Ячеистая структура распределения галактики скоплений галактик.

Строение и эволюция Вселенной

Конечность и бесконечность Вселенной — парадоксы классической космологии. Закон всемирного тяготения и представления оконечности и бесконечности

Вселенной. Фотометрический парадокс и противоречия между классическими представлениями о строении Вселенной и наблюдениями. Необходимость привлечения общей теории относительности для построения модели Вселенной. Связь между геометрических свойств пространства Вселенной с распределением и движением материи в ней.

Расширяющаяся Вселенная

Связь средней плотности материи с законом расширения и геометрическими свойствами Вселенной. Евклидова и неевклидова геометрия Вселенной. Определение радиуса

и возраста Вселенной. Модель «горячей Вселенной» и реликтовое излучения Образование химических элементов во Вселенной. Обилие гелия во Вселенной и необходимость образования его на ранних этапах эволюции Вселенной. Необходимость не только высокой плотности вещества, но и его высокой температуры на ранних этапах эволюции Вселенной. Реликтовое излучение — излучение, которое осталось во Вселенной от горячего и сверхплотного состояния материи на ранних этапах жизни Вселенной. Наблюдаемые свойства реликтового излучения. Почему необходимо привлечение общей теории относительности для построения модели Вселенной.

Современные проблемы астрономии

Ускоренное расширение Вселенной и тёмная энергия.

Наблюдения сверхновых звёзд I типа в далёких галактиках и открытие ускоренного расширения Вселенной. Открытие силы всемирного отталкивания. Тёмная энергия увеличивает массу Вселенной по мере её расширения. Природа силы Всемирного отталкивания.

Обнаружение планет возле других звёзд.

Наблюдения за движением звёзд и определения масс невидимых спутников звёзд, возмущающих их прямолинейное движение. Методы обнаружения экзопланет. Оценка условий на поверхностях экзопланет. Поиск экзопланет с комфортными условиями для жизни на них.

Поиски жизни и разума во Вселенной. Развитие представлений о возникновении и существовании жизни во Вселенной. Современные оценки количества высокоразвитых цивилизаций в Галактике. Попытки обнаружения и посылки сигналов внеземным цивилизациям.

Понятие оптимальной траектории полёта к планете. Время полёта к планете и даты стартов.

Луна и её влияние на Землю

Лунный рельеф и его природа. Приливное взаимодействие между Луной и Землёй. Удаление Луны от Земли и замедление вращения Земли. Прецессия земной оси и предварение равноденствий.

Строение солнечной системы

Современные представления о Солнечной системе.

Состав Солнечной системы. Планеты земной группы и планеты - гиганты, их принципиальные различия. Облако комет Орта и Пояс Койпера. Размеры тел солнечной системы.

Планета Земля

Форма и размеры Земли. Внутреннее строение Земли. Роль парникового эффекта в формировании климата Земли.

Планеты земной группы

Исследования Меркурия, Венеры и Марса, их схожесть с Землёй. Как парниковый

эффект греет поверхность Земли и перегревает атмосферу Венеры. Есть ли жизнь на Марсе. Эволюция орбит спутников Марса Фобоса и Деймоса.

Планеты-гиганты

Физические свойства Юпитера, Сатурна, Урана и Нептуна. Вулканическая деятельность на спутнике Юпитера Ио. Природа колец вокруг планет-гигантов.

Планеты-карлики и их

свойства. Малые тела

Солнечной системы

Природа и движение астероидов. Специфика движения групп астероидов Троянцеви Греков. Природа и движение комет. Пояс Койпера и Облако комет Орта. Природа метеоров и метеоритов.

Метеоры и метеориты

Природа падающих звёзд, метеорные потоки и их радианты. Связь между метеорными потоками и кометами. Природа каменных и железных метеоритов. Природа метеоритных кратеров.

Практическая астрофизика и физика Солнца

Методы астрофизических исследований

Устройство и характеристики телескопов рефракторов и рефлекторов. Устройство радиотелескопов, радиоинтерферометры.

Солнце

Основные характеристики Солнца. Определение массы, температуры и химического состава Солнца. Строение солнечной атмосферы. Солнечная активность и её влияние на Землю и биосферу.

Внутреннее строение Солнца.

Теоретический расчёт температуры в центре Солнца. Ядерный источник энергии и термоядерные реакции синтеза гелия из водорода, перенос энергии из центра Солнца наружу, конвективная зона. Нейтринный телескоп и наблюдения потока нейтрино от Солнца.

Звёзды.

Основные характеристики звёзд

Определение основных характеристик звёзд: массы, светимости, температуры и химического состава. Спектральная классификация звёзд и её физические основы. Диаграмма «спектральный класс» — светимость звёзд, связь между массой и светимостью звёзд.

Внутреннее строение звёзд

Строение звезды главной последовательности.

Строение звёзд красных гигантов и сверхгигантов.

Белые карлики, нейтронные звёзды, пульсары и чёрные дыры

Строение звёзд белых карликов и предел на их массу — предел Чандрасекара.

Пульсары и нейтронные звёзды. Природа чёрных дыр и их параметры.

Двойные, кратные и переменные звёзды

Наблюдения двойных и кратных звёзд. Затменно-переменные звёзды. Определениемасс двойных звёзд. Пульсирующие переменные звёзды, кривые изменения блеска цефеид. Зависимость между светимостью и периодом пульсаций у цефеид. Цефеиды — маяки во Вселенной, по которым определяют расстояния до далёких скоплений и галактик.

Новые и сверхновые звёзды

Характеристики вспышек новых звёзд. Связь новых звёзд с тесными двойными системами, содержащими звезду белый карлик. Перетекание вещества и ядерный взрыв на поверхности белого карлика. Как взрываются сверхновые звёзды. Характеристики вспышек сверхновых звёзд. Гравитационный коллапс белого карлика с массой Чандрасекара в составе тесной двойной звезды — вспышка сверхновой первого типа. Взрыв массивной звезды в конце своей эволюции — взрыв сверхновой второго типа. Наблюдение остатков взрывов сверхновых звёзд.

Эволюция звёзд: рождение, жизнь и смерть звёзд

Расчёт продолжительности жизни звёзд разной массы на главной последовательности. Переход в красные гиганты и сверхгиганты после исчерпания водорода. Спокойная эволюция маломассивных звёзд, и гравитационный коллапс и взрывс образованием нейтронной звезды или чёрной дыры массивной звезды. Определение возраста звёздных скоплений и отдельных звёзд и проверка теории эволюции звёзд.

Млечный Путь

Газ и пыль в Галактике.

Как образуются отражательные туманности. Почему светятся диффузные туманности Как концентрируются газовые и пылевые туманности в Галактике.

Рассеянные и шаровые звёздные скопления.

Наблюдаемые свойства рассеянных звёздных скоплений. Наблюдаемые свойства шаровых звёздных скоплений. Распределение и характер движения скоплений в Галактике. Распределение звёзд, скоплений, газа и пыли в Галактике.

Сверхмассивная чёрная дыра в центре Галактики и космические лучи. Инфракрасные наблюдения движения звёзд в центре Галактики и обнаружение в центре Галактики сверхмассивной черной дыры. Расчёт параметров сверхмассивной чёрной дыры. Наблюдения космических лучей и их связь со взрывами сверхновых звёзд.

Галактики.

Как классифицировали галактики по форме и камертонная диаграмма Хаббла. Свойства спиральных, эллиптических и неправильных галактик. Красное смещение в спектрах галактик и определение расстояния до них.

Закон Хаббла.

Вращение галактик и тёмная материя в них.

Активные галактики и квазары

Природа активности галактик, радиогалактики и взаимодействующие галактики. Необычные свойства квазаров, их связь с ядрами галактик и активностью чёрных дыр в них.

Скопления галактик

Наблюдаемые свойства скоплений галактик, рентгеновское излучение,температура и масса межгалактического газа, необходимость существования тёмнойматерии в скоплениях галактик. Оценка массы тёмной материи в скоплениях. Ячеистая структура распределения галактики скоплений галактик.

Строение и эволюция Вселенной

Конечность и бесконечность Вселенной — парадоксы классической космологии. Закон всемирного тяготения и представления оконечности и бесконечности

Вселенной. Фотометрический парадокс и противоречия между классическими представлениями о строении Вселенной и наблюдениями. Необходимость привлечения общей теории относительности для построения модели Вселенной. Связь между геометрических свойств пространства Вселенной с распределением и движением материи в ней.

Расширяющаяся Вселенная

Связь средней плотности материи с законом расширения и геометрическими свойствами Вселенной. Евклидова и неевклидова геометрия Вселенной. Определение радиуса и возраста Вселенной. Модель «горячей Вселенной» и реликтовое излучения Образование химических элементов во Вселенной. Обилие гелия во Вселенной и необходимость образования его на ранних этапах эволюции Вселенной. Необходимость не только высокой плотности вещества, но и его высокой температуры на ранних этапах эволюции Вселенной. Реликтовое излучение — излучение, которое осталось во Вселенной от горячего и сверхплотного состояния материи на ранних этапах жизни Вселенной. Наблюдаемые свойства реликтового излучения. Почему необходимо привлечение общей теории относительности для построения модели Вселенной.

Современные проблемы астрономии

Ускоренное расширение Вселенной и тёмная энергия.

Наблюдения сверхновых звёзд I типа в далёких галактиках и открытие ускоренного расширения Вселенной. Открытие силы всемирного отталкивания. Тёмная энергия увеличивает массу Вселенной по мере её расширения. Природа силы Всемирного отталкивания.

Обнаружение планет возле других звёзд.

Наблюдения за движением звёзд и определения масс невидимых спутников звёзд, возмущающих их прямолинейное движение. Методы обнаружения экзопланет. Оценка условий на поверхностях экзопланет. Поиск экзопланет с комфортными условиями для жизни на них.

Поиски жизни и разума во Вселенной. Развитие представлений о возникновении и существовании жизни во Вселенной. Современные оценки количества высокоразвитых цивилизаций в Галактике. Попытки обнаружения и посылки сигналов внеземным

цивилизациям.

Тематическое планирование

(11 класс)

№		Количество	Количество работ		
п/п	Наименование разделов (общих тем)	часов	контроль	лабора	практи
			ных	торных	ческих
1.	Введение	1			
2.	Астрометрия	5			
3.	Небесная механика	3			
4.	Строение Солнечной системы	7			
5.	Астрофизика и звёздная астрономия	7			
6.	Млечный путь	3			
7.	Галактики	3			
8.	Строение и эволюция Вселенной	2			
9.	Современные проблемы астрономии	3			
	Итого	34	0	0	0

Календарно-тематическое планированиепо астрономии

No	Сроки пров	едения		Количество
урока	урока		Тема урока	часов
Jpoka	по плану	по факту		шеов
Тема: В	ведение			1
1	1 неделя		Введение в астрономию	
Тема: А	строметрия			5
2	2 неделя		Звёздное небо	
3	3 неделя		Небесные координаты	
4	4 неделя		Видимое движение планет и	
			Солнца	
5	5 неделя		Движение Луны и затмения	
6	6 неделя		Время. Календарь	
Тема: Н	ебесная меха	ника		3
7	7 неделя		Система мира	
8	8 неделя		Законы Кеплера движения планет	
9	9 неделя		Космические скорости и	
			межпланетные перелёты	
Тема: С	Тема: Строение Солнечной системы			
10	10 неделя		Современные представления о	
			строении и составе Солнечной	
			системы	
11	11 неделя		Планета Земля	
12	12 неделя		Луна и её влияние на Землю	
13	13 неделя		Планеты земной группы	
14	14 неделя		Планеты – гиганты. Планеты	
			карлики.	
15	15 неделя		Малые тела Солнечной системы	
16	16 неделя		Современные представления о	
			происхождении Солнечной	
			системы	
Тема: Астрофизика и звёздная астрономия				7
17	17 неделя		Методы астрофизических	
			исследований	
18	18 неделя		Солнце	
<u> </u>	1			L

19	19 неделя	Внутреннее строение и источник	
		энергии Солнца	
20	20 неделя	Основные характеристики звёзд	
21	21 неделя	Белые карлики	
22	22 неделя	Новые и сверхновые звезды.	
23	23 неделя	Эволюция звезд	
Тема:	Млечный путь	1	3
24	24 неделя	Газ и пыль в галактике.	
25	25 неделя	Рассеянные и шаровые звёздные	
		скопления	
26	26 неделя	Сверх массивная чёрная дыра в	
		центре млечного пути	
Тема:	Галактики	I	3
27	27 неделя	Классификация галактик.	
28	28 неделя	Активные Галактики и квазары.	
29	29 неделя	Скопление галактик	
Тема:	Строение и эволюг	ция Вселенной	2
30	30 неделя	Конечность и бесконечность	
		Вселенной Расширяющаяся	
		Вселенная.	
31	31 неделя	Модель «горячей Вселенной» и	
		реликтовое излучение	
Тема:	Современные проб	блемы астрономии	3
32	32 неделя	Ускоренное расширение	
		Вселенной и тёмная энергия	
33	33 неделя	Обнаружение планет возле других	
		звёзд	
34	34 неделя	Поиск жизни и разума во	
		Вселенной	